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Abstract 
The rise in technological developments in artificial intelligence has unlocked new avenues of 
exploration in the intersection of machine learning (ML) and particle physics. We evaluated 
the potential of the XGBoost (ML) algorithm (a powerful gradient-boosted decision tree 
classification algorithm) to streamline the process of identifying rare particle decays. We 
achieved this by comparing the XGBoost’s performance in four different classifications in 
particle physics with the performance of existing classification methods, such as restrictive 
cuts. We found that whilst in some cases the algorithm provided near-perfect prediction 
results, the algorithm was overly rigorous in other cases, leading to large numbers of signal 
events being dismissed as background events by the algorithm. 

1. Introduction 

1.1 Motivation 
Currently, the process of searching for rare particle decays presents a significant challenge 
for particle physicists, as these decays can only be found in a tiny proportion of the millions 
of events picked up by the sensors in particle detectors. The emergence of the XGBoost, a 
powerful classification algorithm, holds potential in aiding particle physicists to streamline 
this challenge, as it may provide a better alternative to existing methods in identifying the 
events that contain elusive particle decays. 
 
However, there are limited studies on the performances of the XGBoost algorithm in particle 
physics classifications. Therefore, we aim to address this gap by identifying the specific 
areas within particle physics where XGBoost excels and to compare its performance with 
existing methods, such as applying restrictive cuts, through evaluating its performance in 
carrying out four different classifications to look for: 

1.​ Higgs boson events 
2.​ Supersymmetry events 
3.​ Beyond standard model Z’ events 
4.​ Kaluza klein graviton events 



1.2 XGBoost Classification Algorithm 
As advancements in Artificial Intelligence continue to be made, increasingly powerful 
machine learning algorithms are being developed at a rapid pace, and the XGBoost 
algorithm is a powerful classification algorithm that has arisen as a result of this 
technological revolution. It uses gradient boosted decision trees to provide accurate 
prediction results. Boosting is a technique where new models correct errors made by 
existing ones and are added one by one until no further improvements occur, and gradient 
boosting allows models to predict the errors made by the previous models to help give an 
accurate prediction result. The main advantages of the XGBoost are its exceptional speed 
and accuracy due to its ability to discern subtle patterns in the training data to provide 
accurate predictions, which may prove to be invaluable when carrying out particle physics 
classifications. (1) 

1.3 AMS Metric 
We evaluated the performances of the XGBoost classifier algorithm at carrying out the 
different classifications using the Approximate Median Significance (AMS) metric. When 
providing the true positive and false positive rates of the classification, the AMS metric uses 
the Wilks theorem to compare the probabilities of observing the signal background 
hypothesis and the background only hypothesis, to provide an overall figure representing the 
performance of the classifier. Therefore, the AMS provided us with a standardised way of 
assessing the XGBoost algorithm across the different applications. (2) 

2. Results 

2.1 Higgs Boson Events Classification 
Prior research advancements in particle physics have revealed that it is possible to 
represent every particle as a wave in a quantum field (the Higgs field), which suggests that 
there would be a particle associated with this field (the Higgs boson) (3). When we wrote a 
program that trained the XGBoost algorithm to classify Higgs Boson events using over 
400,000 samples of data (4) (containing a mixture of signal and background events), and 
tested it with another set of 400,000 events (ATLAS Collaboration), all of the test events that 
the XGBoost classifier had classified as signal events were indeed a real signal event. This 
yields an AMS score of infinity, which suggests that the XGBoost algorithm performed well in 
classifying Higgs Boson events. 

This can be reinforced by observing the ROC curve, which compares the true 
positive rate against the false positive rate. As evident in figure 2.1.1, the TPR initially 
increases significantly, further suggesting that the XGBoost is accurate. 



 
Figure 2.1.1: Higgs Boson Classification ROC Curve 

2.2 Beyond Standard Model Z’ Events Classification 
A type of particle we looked at is the Z’ boson, hypothesised with the Topcolor model - a 
model for electroweak symmetry breaking, in which a top anti-top pair forms a composite 
Higgs boson. In this model, a Z’ boson was predicted to exist, which is the particle that we 
decided to investigate to train the XGBoost classifier with. 
 
To find these particles, we can look at the decay channel of it. In this case, it decays into a 
top anti-top pair in events with a single charged lepton, large-R jets and missing transverse 
momentum. The lepton must have a transverse momentum > 30 GeV, missing transverse 
energy > 20 GeV, a small-R jet close to the lepton, a large-R jet passing the top tagging 
requirements(mass > 100 GeV, N-subjettiness ratio < 0.75) etc.  
 
Finally, we plot the histograms of the invariant masses from the original (Fig 2.2.1) and the 
results from the XGBoost classifier (Fig 2.2.2), shown below. The AMS value obtained from 
the graph is . 

 
Figure 2.2.1: Z’ events classified using restrictive cuts 
Figure 2.2.2: Z’ events classified using the XGBoost algorithm 

2.3 Kaluza Klein Graviton Events Classification 

One type of particle we shall look at is a Kaluza Klein graviton hypothesised using the 
Randall-Sundrum model (5) (a model for gravity where gravity propagates through warped 



extra dimensions). In a similar way to atoms having excited states or low energy states, 
particles can have corresponding Kaluza Klein states where the particle has extra mass 
(instead of energy) in other dimensions (6). 

In order to find the Kaluza Klein graviton we can search for the particles it decays into, in this 
case the particle decays into a gamma-gamma pair. So to find this particle we need to bump 
hunt gamma ray photons with transverse energies over 20 GeV (5). To do this we made the 
following cuts to the ATLAS data set: the event must have two photons, it must activate the 
photon trigger, both photons must have a transverse energy greater than 20GeV. Once we 
obtained our data points we subtracted any data points that could have been formed by the 
Higgs -> GammaGamma decay channel and plotted a graph of transverse energy against 
frequency using a fitting function. 

XGBoost classifiers was trained with data samples containing the relevant features (e.g. 
electron/muon number, transverse mass, R-jet data ... etc) to identify the events, which had 
good photons and the events which had photon isolation (this problem required two 
classifiers) . The models were then used in parallel to identify the events, which contained 
the decay of the Kaluza Klein graviton (both good photons and photon isolation). The events 
were then plotted on a histogram (Fig. 2.3.1) and compared with the original histogram (Fig. 
2.3.2) to see the performance of the classification. The AMS values were 866.8 for the good 
photon classification and 866.7 for the photon isolation classification. 

 

Figure 2.3.1 (left): Kaluza Klein graviton events classified using restrictive cuts 
Figure 2.3.2 (right): Kaluza Klein graviton events classified using the XGBoost algorithm 

2.4 Supersymmetry Events Classification 
Supersymmetry is the idea that every fermion has a partner boson with different spin 
properties, where fermions have half-integer spin values and bosons have integer spin 
values. (7) We can search for supersymmetric particles by examining pairs of particles 
created from collisions in CERN. To do this, we can use Python to examine ATLAS open 
data and make ‘cuts’ on it. These cuts essentially filter out data that we do not need, leaving 
us with a subset of data that is much more useful to examine supersymmetric events. We 
made these cuts by first using uproot to load the ATLAS open data. We then created the 
framework for our histograms to be plotted later. Following this, we selected all of the 
information we needed to make cuts from the data and stored it. Then, we set up variables 



to store the momentum of particles by creating four-vectors using their Lorentz factor and 
velocity. A series of cuts were made, starting with including only collisions between electrons 
and muons in pairs of the same type and opposite charge. We then selected events where 
each particle had a minimum momentum, which we decided by following advice from the 
ATLAS experiment at CERN. Following this, we calculated the momentum of leading and 
trailing leptons, and summed them by their vectors to find the dilepton invariant mass. We 
then made some more cuts based on this mass and the accuracy of detected jets. Now, we 
categorised these leptons into categories based on the magnitude of their invariant mass 
and MT2 variables (stransverse mass). Finally, we plotted the occurrence of these leptons 
as they varied at different dilepton invariant mass values for each histogram, with general 
(least strict), loose and tight requirements depending on dilepton invariant mass and MT2 
values. 
 
After obtaining these results, we stored them in a CSV. We then used the XGBoost machine 
learning algorithm and trained it on half of our data, testing it on the other half to see how 
well it predicted our results. To find the accuracy of our algorithm, rather than simply 
calculate the proportion of predictions that were ‘correct’ or within an acceptable range, we 
used the AMS metric - we did this by defining a function that implements the AMS metric and 
then calling it for each category (general, loose, tight). The graphs plotted by the XGBoost 
algorithm are  below, next to our resultant histograms. The algorithm produced graphs and 
AMS values  ~1.689 (loose) and ~1.192 (tight), while the general category had an AMS 
value of ~ 603.226. This may have been a result of using a smaller dataset as this would've 
resulted in a weaker model. The comparison of the graphs shows us that our loose events 
classification predicted by the XGBoost algorithm (Fig. 2.4.4) is most similar to the loose 
events classification made using cuts (Fig. 2.4.3), sharing a shape with the tight 
classification graphs (Fig. 2.4.5, 2.4.6). Hence, loose cut requirements are the best for 
building an accurate model to detect supersymmetric particles although they may lead to 
more false positives than desirable when compared to tight requirements. 

 
Figure 2.4.1 (left): SUSY events general classification using restrictive cuts 
Figure 2.4.2 (right): SUSY events general classification using the XGBoost algorithm 



 
Figure 2.4.3 (left): SUSY events loose classification using restrictive cuts 
Figure 2.4.4 (right): SUSY events loose classification using the XGBoost algorithm 

 
Figure 2.4.5 (left): SUSY events tight classification using restrictive cuts 
Figure 2.4.6 (right): SUSY events tight classification using the XGBoost algorithm 

3. Discussion, Conclusion and Future Work 
From BSM particles to delving into supersymmetry we have explored the performances of 
the XGBoost machine learning algorithm across a wide range of groundbreaking 
classification problems in particle physics.  
 
Our results revealed significant variations in the XGBoost algorithm’s performance across 
our tested range of classifications in particle physics. In some areas, such as the Higgs 
boson classification, the XGBoost gave perfect or near-perfect prediction results. However, 
in other cases, it was clear that the XGBoost displayed excessive rigidity, leading substantial 
portions of the signal data being excluded and dismissed as background data, which 
resulted in thin meagre graphs, as seen in our exploration of SUSY. 
 
The XGBoost is a supervised learning algorithm, and so relies on labelled datasets. 
Therefore, the algorithm works best in classifications where the selection criteria is well 
defined, as it would allow accurate labelled training datasets to be generated. In these 
cases, researchers may not feel the full benefit of the XGBoost, as the algorithm will only 
ever (at best) replicate the predetermined cuts. However, this is an issue that we hope to 



address in our future work by exploring the potential of deep learning models to identify the 
selection criteria for particle decay classifications, which have very few selection criteria 
identified so far.  
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